Лекция 11
ГЛАВА 11 Обработка событий
Что мы расскажем:
· Объекты слушателя
· Анонимные внутренние объекты
· Использование лямбда-выражений в обработчиках событий
В предыдущей главе мы уже занимались обработкой событий. Часть упражнения, в которой мы написали функцию, которая будет увеличивать значение текстового представления при каждом нажатии кнопки, - это упражнение по декларативной обработке событий. Чтобы связать имя функции с событием клика, мы просто устанавливаем атрибут android: onClick представления для имени функции. Это простой и несложный способ обработки событий, но он ограничен только событием «щелчок». Когда вам нужно обрабатывать такие события, как длительные щелчки или жесты, вам нужно использовать прослушиватели событий - это тема этой главы.
Введение в обработку событий
Пользователь взаимодействует с вашим приложением, касаясь, щелкая, проводя пальцем или печатая что-либо. Платформа Android фиксирует, хранит, обрабатывает и отправляет эти действия в ваше приложение как объекты событий. Мы можем реагировать на эти события, написав функции, которые специально разработаны, чтобы справиться с ними. Функции, обрабатывающие события, написаны внутри объектов-слушателей, а их довольно много. На рис. 11-1 (см. в книге) показана упрощенная модель того, как действия пользователя обрабатываются платформой Android и вашим приложением.
Когда пользователь что-то делает с вашим приложением, например, нажимает кнопку, платформа Android улавливает это действие и превращает его в объект события. Объект события содержит данные о действии пользователя (например, какая кнопка была нажата, где была кнопка, когда она была нажата, и т. д.) Android отправляет этот объект события в ваше приложение и он вызывает определенную функцию, которая соответствует действиям пользователя. Если пользователь нажал кнопку, Android вызовет функцию onClick () для объекта Button, если пользователь нажимает ту же кнопку, но удерживает ее немного дольше, будет вызвана функция onLongClick (). Объекты просмотра, такие как Button, могут реагировать на ряд событий, таких как щелчки, нажатия клавиш, касание или пролистывание и т. д. В таблице 11-1 перечислены некоторые общие события и соответствующие им обработчики событий.
Таблица 11-1. Общие объекты слушателя
	Интерфейс
	Функция
	Описание

	View.OnClickListener
	onClick ()
	Это вызывается, когда пользователь либо касается и удерживает элемент управления (в режиме касания), либо фокусируется на элементе с помощью клавиш навигации, а затем нажимает клавишу ENTER.

	View.OnLongClickListener
	onLongClick()
	Практически то же самое, что и щелчок, но только дольше

	View.OnFocusChangeListener
	onFocusChange()
	Когда пользователь переходит к элементу управления или от него.

	View.OnTouchListener
	onTouch()
	Практически то же самое, что и действие щелчка, но этот обработчик позволяет узнать, провел ли пользователь вверх или вниз. Вы можете использовать это, чтобы реагировать на жесты

	View.OnCreateContextMenuListener
	onCreateContextMenu()
	Android вызывает это, когда создается ContextMenu в результате длительного щелчка.

Чтобы настроить слушателя, объект View может установить или, что более точно, зарегистрировать объект слушателя.
Регистрация слушателя означает, что вы сообщаете платформе Android, какую функцию вызывать, когда пользователь взаимодействует с объектом View. На рисунке 11-2 (см. в книге) показан аннотированный код для регистрации обработчиков.
SetOnClickListener является функцией-членом android.view. Класс View, что означает, что он есть у каждого дочернего класса View. Эта функция ожидает объект OnClickListener в качестве аргумента - этот объект становится слушателем для элемента управления кнопки. При нажатии кнопки запускаются коды внутри функции onClick.
Мы создали объект слушателя, создав выражение объекта, которое наследуется от View.OnClickListener. Этот тип объявлен как вложенный интерфейс в классе View.
Выражения объекта - это котлинский эквивалент анонимных внутренних классов Java. На Java мы писали такие коды, как в листинге 11-1.
Листинг 11-1. onClick Listener в Java
button.setOnClickListener (новый View.OnClickListener () {
 @Override
 public void onClick (Просмотр просмотра) {
 System.out.println («Привет, щелкни»);
 }
}});
В Kotlin анонимный внутренний класс создается с использованием объектного выражения, как показано в листинге 11-2.
Листинг 11-2. onClick Listener в Котлине
button.setOnClickListener(object: View.OnClickListener {
 override fun onClick(v: View?) {
 println("Hello click")
 	}
})

Листинг 11-2 представляет собой подробный способ написания объектного выражения. Поддержка Kotlin лямбда-выражений может упростить наш существующий код до чего-то вроде того, что показано в листинге 11-3.
Листинг 11-3. onClick Listener с использованием лямбда-выражений
button.setOnClickListener {
 println ("Привет")
}
Теперь, когда у нас достаточно практических знаний о событиях, давайте рассмотрим их дальше, создав новый проект. Таблица 11-2 показывает детали проекта.
Таблица 11-2. Информация о проекте для класса CH11EventAnonymous
	Детализации проекта
	Значение

	Имя приложения
	CH11EventAnonymousClass

	Домен компании
	Используйте имя своего веб-сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	Только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat

Этот проект будет содержать только два элемента управления: TextView, поставляемый с проектом, когда мы использовали мастер, и представление Button, которое нам еще предстоит добавить. Кнопка будет перехватывать нажатие и длительное нажатие событий, используя анонимный внутренний объект.
Откройте файл activity_main.xml в главном редакторе, если он еще не открыт. Вы можете найти его в окне Project Explorer в папке app > res > layout.
Добавьте кнопку в область конструктора и добавьте к ней некоторые ограничения. Вы можете добавить элемент управления Button в макет, перетащив его из палитры в область конструктора, как показано на рисунке 11-3.
[image:]
Рисунок 11-3. Добавление кнопки управления в область конструктора
Когда кнопка управления выбрана, щелкните «Infer constraints» на панели инструментов ограничений (также показанной на рисунке 11-3).
Вы можете заметить желтый предупреждающий треугольник где-нибудь в правом верхнем углу редактора макета (см. Рисунок 11-4). Щелкните поле предупреждения.
[image:]
Рисунок 11-4. Показать предупреждения и кнопку ошибки
На рис. 11-5 показано окно инструмента сообщений. Он содержит некоторые объяснения того, почему мы получили предупреждение, и кнопку с предложением предлагаемого исправления.
[image:]
Рисунок 11-5. Предлагаемое исправление
AS3 жалуется, потому что только что добавленная кнопка имеет жестко запрограммированное значение в текстовом свойстве. В листинге 11-4 перед «исправлением» показан (фрагмент) файл activity_main.xml. Сейчас свойство android: text имеет значение «Button», строковый литерал.
Листинг 11-4. activity_main.xml, Элемент Button, До исправления
<Button
 android:id="@+id/button"
 android:text="Button"
/>
Андроиды предпочитают, чтобы мы записывали значения атрибутов, такие как текстовое свойство Button, в файл ресурсов, а не жестко их кодировали. Нажмите кнопку «Исправить», чтобы AS3 мог автоматически извлечь строковый ресурс. Это действие открывает окно «Извлечь ресурс» (см. Рис. 11-6).
[image:]
Рисунок 11-6. Извлечь ресурс
В нашем проекте есть файл строковых ресурсов в app / res / values ​​/ strings.xml. Он предоставляет текстовые значения ресурсов для приложения. Android хочет, чтобы мы сохраняли все строковые литералы в этом файле ресурсов, а не жестко их кодировали, как вы видели в листинге 11-4.
«Имя ресурса» становится атрибутом «имя» вновь созданного строкового ресурса, а «Значение ресурса» становится, в общем, значением строкового ресурса. Это значение будет отображаться в тексте кнопки. Нажмите «ОК», чтобы завершить действие.
В листинге 11-5 показано содержимое файла activity_main.xml после исправления. Значение android: text теперь установлено на «@ string / button». Знак @ означает, что мы не должны использовать значение этой строки напрямую, а вместо этого искать ресурс с именем «button» в файле ресурсов строк.

Листинг 11-5. activity_main.xml, элемент кнопки, после исправления
<Button
 android:id="@+id/button"
 android:text="@string/button"
/>

Последнее, что нам нужно сделать с файлом макета, - это присвоить атрибут id контейнеру макета. Контейнер макета по умолчанию не имеет атрибута id. Нам нужно присвоить ему идентификатор, потому что мы будем ссылаться на него позже в нашем коде. Переключитесь в режим дизайна и щелкните где-нибудь внутри контейнера макета (как показано на рисунке 11-7). На панели атрибутов отредактируйте свойство id. В этом примере идентификатор контейнера макета - «root_layout».
[image:]
Рисунок 11-7. Измените атрибут id контейнера макета
В листинге 11-6 показано измененное содержимое файла макета.
Листинг 11-6. Полный список для activity_main.xml
<? xml version = "1.0" encoding = "utf-8"?>
<android.support.constraint.ConstraintLayout xmlns: android = "http: // schemas.
android.com/apk/res/android "
 xmlns: app = "http://schemas.android.com/apk/res-auto"
 xmlns: tools = "http://schemas.android.com/tools"
 android: id = "@ + id / root_layout" ➊
 android: layout_width = "match_parent"
 android: layout_height = "match_parent"
 инструменты: context = ". MainActivity">
 <TextView
 android: id = "@ + id / textView"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: text = "Hello World!"
 app: layout_constraintBottom_toBottomOf = "родительский"
 app: layout_constraintLeft_toLeftOf = "родительский"
 app: layout_constraintRight_toRightOf = "родительский"
 app: layout_constraintTop_toTopOf = "родительский"
 app: layout_constraintVertical_bias = "0.353" />
 <Кнопка
 android: id = "@ + id / button"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_marginEnd = "8dp"
 android: layout_marginStart = "8dp"
 android: layout_marginTop = "36dp"
 android: text = "@ строка / кнопка" ➋
 app: layout_constraintEnd_toEndOf = "родительский"
 app: layout_constraintStart_toStartOf = "родительский"
 app: layout_constraintTop_toBottomOf = "@ + id / textView" />
</android.support.constraint.ConstraintLayout>

➊ android: id контейнера макета теперь установлен на + @ id / root_layout. Позже в нашем коде мы можем ссылаться на этот элемент управления просто как на root_layout.
➋ Свойство android: text теперь имеет значение @ string / button; это больше не жестко запрограммировано. Теперь он получает свое значение из файла ресурсов strings.xml.
Теперь мы можем работать с файлом программы. Откройте MainActivity.Kt в главном редакторе. Вы можете запустить его, дважды щелкнув файл app / java / com.example… / MainActivity.Kt в окне проекта.
Мы хотим, чтобы кнопка реагировала как на щелчки, так и на длительные нажатия. Для этого нам нужно настроить два отдельных слушателя для одной и той же кнопки - мы могли бы создать две кнопки и назначить каждой из них по слушателю, но я считаю, что упражнение будет более поучительным, если мы привяжем два слушателя к одной и той же кнопке.
Действие не обязательно должно быть видимым для пользователя до того, как мы настроим слушателей; он должен быть только в состоянии «создано». Вот почему мы настроим слушателей в функции обратного вызова onCreate(). Давайте сначала разберемся с событием щелчка, а затем займемся долгим щелчком. В листинге 11-7 показан код OnClickListener.
Листинг 11-7. OnClickListener
button.setOnClickListener(object : View.OnClickListener {
 override fun onClick(v: View?) {
 }
})

Кстати, когда вы вводите эти коды, вы можете увидеть некоторые ошибки или предупреждения, подобные показанному на рисунке 11-8.
[image:]
Рисунок 11-8. Подсказки AS3
На рисунке 11-8 AS3 предупредил о неразрешенной «кнопке» ссылки. Чтобы исправить эту ошибку, мы можем либо вручную ввести необходимые операторы импорта, либо использовать функцию «Быстрое исправление» AS3. Чтобы использовать быстрое исправление, щелкните в любом месте неразрешенной ссылки - в нашем случае идентификатора «кнопки» - затем нажмите клавиши OPTION + ENTER, если вы используете macOS; ALT + ENTER, если вы работаете в Windows или Linux.
AS3 предложит несколько вариантов, если есть несколько способов решить проблему. Вы можете просмотреть параметры и выбрать, какой из них вы хотите использовать.
Рисунок 11-9 показывает варианты того, как исправление неразрешенной эталонной ошибки. Мы выберем последний вариант - этим оператором импорта является Kotlin Android Extensions (KAE).
[image:]
Рисунок 11-9. AS3 намекает на импорт
Волшебный соус KAE заключается в том, что он предоставляет идентификаторы всех элементов представления в вашем макете как свойства расширения класса Activity. Итак, если у вас есть представление Button в activity_main.xml с идентификатором «button», вы можете просто использовать этот идентификатор в классе Activity как обычную переменную - вам больше не нужно использовать findViewById ().
После того, как вы наберете обработчик событий, как показано в листинге 11-7, а также на рисунке 11-10, вы заметите, что AS3 намекает нам преобразовать объект слушателя в лямбда-выражение.
[image:]
Рисунок 11-10. Преобразовать в лямбда-подсказку
Чтобы использовать быстрое исправление, щелкните в любом месте «OnClickListener», как показано на рисунке 11-11, и нажмите OPTION + ENTER или ALT + ENTER, затем выберите «Преобразовать в лямбда».
[image:]
Рисунок 11-11. Быстрое исправление преобразования в лямбда
В версии, упрощенной лямбда-выражением, удалены некоторые из наших кодов - скобки в setOnClickListener, выражение объекта и переопределенная функция onClick исчезли, оставив нам только следующий код:
button.setOnClickListener {}
Следующее, что нужно сделать, - это поместить сообщение Toast в обработчик onClick.
Листинг 11-8 показывает простое сообщение Toast внутри обработчика кликов. Тост - это небольшое всплывающее сообщение, которое автоматически исчезает через некоторое время. Вы можете использовать его для отправки пользователю небольших сообщений обратной связи. В листинге 11-8 показано, как создать сообщение Toast внутри OnClickListener.
Листинг 11-8. Тост сообщение
button.setOnClickListener {
 Toast.makeText (this, "Hello World", Toast.LENGTH_LONG)
 .show()
}

Отображение сообщения Toast - это двухэтапный процесс. Первый шаг - создать сообщение Toast с помощью функции makeText (). Он принимает три параметра: (1) контекст приложения, которое в нашем случае является экземпляром MainActivity; (2) сообщение, которое нужно показать; и (3) как долго показывать сообщение. Второй шаг - сделать его видимым, вызвав функцию .show ().
Перейдем к прослушивателю долгого нажатия. Код этого слушателя показан в листинге 11-9.
Листинг 11-9. OnLongClickListener
button.setOnLongClickListener(object: View.OnLongClickListener {
 override fun onLongClick(v: View?): Boolean {
 return true
 }
})
Сокращение кода из листинга 11-9 до его лямбда-версии дает нам следующий код:
button.setOnLongClickListener {true}
Чтобы протестировать обработчик длинных кликов, давайте использовать SnackBar, а не Toast. SnackBar похож на Toast, но отображается в нижней части экрана. Вы можете заставить его исчезнуть через некоторое время, как тосты, или вы можете заставить пользователя смахнуть его. SnackBar более способный, чем Toast, потому что вы можете включить в сообщение некоторые действия, например, небольшое диалоговое окно.
Прежде чем вы сможете использовать SnackBar в своем проекте, вам необходимо изменить файл build.gradle проекта. См. Листинг 11-10 для изменений, которые вам нужно внести.
Листинг 11-10. /app/build.gradle
dependencies {
 implementation 'com.android.support:design:27.1.1' ➊
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso:espressocore:3.0.2'
}
➊ Вам необходимо добавить это в файл build.gradle проекта (уровень приложения), прежде чем вы сможете использовать SnackBar.
После этого вам нужно «синхронизировать» файл Gradle. В верхней части главного редактора появится желтая полоса, а в правом верхнем углу будет ссылка на «Синхронизировать» файл. Щелкните его, как показано на рисунке 11-12.
[image:]
Рисунок 11-12. Синхронизируйте файл build.gradle
После этого теперь вы можете использовать элемент SnackBar. В листинге 11-11 показано, как создать SnackBar внутри обработчика длительного щелчка.
Листинг 11-11. Сообщение SnackBar внутри OnLongClickListener
button.setOnLongClickListener {
 Snackbar.make(root_layout, "Long click", Snackbar.LENGTH_LONG).show()
 true
}

Функция make в SnackBar требует трех параметров: (1) родительское представление; root_layout - это идентификатор нашего контейнера макета; (2) сообщение, которое нужно показать; и (3) как долго показывать сообщение.
Последняя строка в OnLongClickListener на самом деле является оператором return, но мы опустили «return», потому что обработчик находится в форме лямбда, и в этой форме возвращается последнее выражение в блоке.
Функция обратного вызова onLongClick () имеет логическую подпись - она ​​возвращает либо истину, либо ложь. В нашем примере мы вернули значение true, которое сообщает среде выполнения Android, что событие уже было обработано и нет необходимости в других обработчиках событий (например, onClick) для его повторной обработки. Если бы мы вернули false, обработчик onClick сработал бы сразу после onLongClick. В листинге 11-12 показан полный код MainActivity.
Листинг 11-12. MainActivity.Kt, аннотированный
package com.example.ted.ch11_event_anonymous_class ➊
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.support.design.widget.Snackbar
import android.test.ViewAsserts
import android.view.View
import android.widget.Toast
import kotlinx.android.synthetic.main.activity_main.* ➋
class MainActivity : AppCompatActivity() { ➌
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main) ➍
button.setOnClickListener {
 Toast.makeText(this, "Hello World", Toast.LENGTH_LONG).show()
 }
 button.setOnLongClickListener {
 Snackbar.make(root_layout, "Long click", Snackbar.LENGTH_LONG).show()
 true
 }
 }
}

➊ Пакетная декларация для нашего проекта. Это происходит из записи «домен компании» во время создания проекта.
➋ Оператор импорта для расширения Kotlin Android (KAE). KAE превращает все элементы View в файле activity_main.xml в свойство расширения. Следовательно, мы можем ссылаться на любой элемент View, используя только их ID.
➌ Мы расширяем AppCompatActivity, поэтому можем использовать современные элементы, такие как SnackBar, и по-прежнему запускать приложение на более ранних версиях Android.
➍ Этот оператор связывает MainActivity с activity_main.xml, нашим файлом макета.
Если вы запустите приложение на эмуляторе, вы увидите что-то вроде рисунка 11-13.
[image:]
Рисунок 11-13. Завершенный проект, запущенный в эмуляторе

Краткое содержание главы
· Вы можете установить атрибут android: onClick на имя функции, если вы хотите обрабатывать простые события щелчка.
· Объекты прослушивателя должны быть зарегистрированы в среде выполнения Android, если вы хотите перехватить определенные события.
· Есть много видов объектов слушателей, и они перечислены как вложенные интерфейсы в классе View.
[bookmark: _GoBack] Использование расширения Kotlin для Android упрощает кодирование. Он предоставляет идентификаторы всех представлений в файле макета как свойства расширения MainActivity - нам больше не нужно использовать findViewById ().
· Lambdas очищает наши коды обработки событий.
В следующей главе мы рассмотрим одну из самых важных частей Android: намерения.
Android как архитектура не может существовать без него. Это клей, который связывает воедино все слабо связанные компоненты Android.
image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

